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Highlights 1 

 Sedimentary microcharcoal records from across Southern Africa were aggregated 2 
and analyzed to understand the spatial scale of fire and its relationship to climate 3 

 Microcharcoal records after 2000 BP show a notable increase in fire that is not 4 
accounted for by shifting climate conditions 5 

 This increase in fire corresponds with the advent of food production in Southern 6 
Africa 7 

 Stronger signals in eastern grasslands may reflect the capacity of those ecosystems 8 
to sustain repeated firing and grazing 9 

Abstract 10 

Globally, fire is a primary agent for modifying environments through the long-term coupling of 11 
human and natural systems. In southern Africa, control of fire by humans has been 12 
documented since the late Middle Pleistocene, though it is unclear when or if anthropogenic 13 
burning led to fundamental shifts in the region’s fire regimes. To identify potential periods of 14 
broad-scale anthropogenic burning, we analyze aggregated Holocene charcoal sequences 15 
across southern Africa, which we compare to paleoclimate records and archaeological data. 16 
We show climate-concordant variability in mid-Holocene fire across much of the 17 
subcontinent. However, increased regional fire activity during the late Holocene (~2,000 BP) 18 
coincides with archaeological change, especially the introduction and intensification of food 19 
production across the region. This increase in fire is not readily explained by climate 20 
changes, but rather reflects a novel way of using fire as a tool to manage past landscapes, 21 
with outcomes conditioned by regional ecosystem characteristics. 22 
 23 
Keywords: Paleofire, food production, southern Africa, microcharcoal, human-environment 24 
interaction  25 
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Introduction 26 

Fire is a key determinant of ecosystem function worldwide (Bowman et al., 2009). Many 27 
ecosystems today (e.g., savannas and grasslands in tropical areas that could support 28 
forests) are a legacy of long-term fire activity and are unlikely to persist in its absence (Bond 29 
et al., 2005; Bowman et al., 2011), requiring consideration of fire history for their 30 
management (Keeley et al., 2011). In addition to natural sources of ignition, humans apply 31 
fire to modify environments across a range of ecological conditions and socioeconomic 32 
configurations (Butz, 2009; e.g. Codding et al., 2014; Nigh and Diemont, 2013; Roos et al., 33 
2018). Burning vegetation can produce short-term gains such as flushing out game or 34 
clearing space for agricultural activities, and can also result in delayed benefits by improving 35 
the condition of the underlying soil, inducing vegetation growth, and influencing the kinds of 36 
organisms that recolonize burned areas. By mediating the climatic and biotic factors that 37 
determine primary productivity, anthropogenic burning can act as a means of augmenting 38 
productivity and/or mitigating risk in uncertain environments, while simultaneously 39 
influencing the character and resilience of ecosystems. 40 
  41 
There has been considerable attention paid to the role of humans influencing fire regimes 42 
and the scale of their impact on ecosystems (Archibald et al., 2012; Bond and Zaloumis, 43 
2016; Bowman et al., 2011). Human use of fire for landscape modification is an adaptation 44 
that potentially developed deep in the past (Brown et al., 2009; MacDonald et al., 2021); 45 
however, disentangling the signals of past fire used for resource management from 46 
naturally-occurring fire is difficult (Bowman et al., 2011; Scherjon et al., 2015). This is 47 
especially true in southern Africa, which has one of the longest records of human-48 
environment interactions in the world (Pyne, 2015). Ethnohistoric accounts attest to the use 49 
of fire by indigenous pastoralist communities within the last few hundred years (Pooley, 50 
2014), and it has long been assumed that prehistoric human populations would also have 51 
used fire to improve the productivity of their environments (Deacon, 1993; Huffman, 2007), 52 
but evidence for intentional landscape burning deeper in time is lacking. 53 
 54 
With this in mind, we present data from the Holocene of southern Africa to address this long-55 
standing problem in the history of human-environment interactions. Charcoal influx in 56 
sedimentary sequences from across the subcontinent provides evidence of broad-scale 57 
burning, while summed probabilities of radiocarbon determinations from archaeological 58 
contexts indicate relative changes in the intensity of human activity. Paleoclimate 59 
reconstructions drawn from multiple proxies are used to identify coeval patterning in aridity, 60 
allowing us to compare periods of fire-prone conditions in southern Africa with the record of 61 
past fire activity.  62 

Climatological, Ecological and Archaeological Context 63 

The diverse environments of present-day southern Africa are shaped by contrasting rainfall 64 
regimes (Fig 1A). Precipitation in much of eastern and central southern Africa is controlled 65 
by advection of moisture from the Indian Ocean, bringing monsoon rains concentrated in the 66 
austral summer months (the summer rainfall zone or SRZ), while the southwest has a 67 
Mediterranean climate featuring winter rainfall brought by south Atlantic westerlies (the 68 
winter rainfall zone or WRZ) (Tyson, 1986). In the boundary between these two regions, and 69 
extending along a narrow strip of the southern coastline, is a mixed regime where rainfall is 70 
distributed more evenly throughout the year (the aseasonal zone or ARZ). Over millennial 71 
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timescales, the SRZ and WRZ are typically out of phase, such that wetter conditions in one 72 
area often coincide with drier conditions in the other (Chase et al., 2017). Although the 73 
spatial extents of the different rainfall zones have likely varied through time and there is 74 
growing awareness of climatic variability within these regions (Chase et al., 2020), these 75 
general distinctions are thought to have persisted since the Pliocene (Lehmann et al., 2016).  76 
 77 

  78 
Figure 1: Locations of sediment cores (open circles) and radiocarbon determinations from 79 
archaeological sites (black dots) in southern Africa. A) rainfall seasonality expressed as the 80 
percentage of rainfall occurring during southern hemisphere winter months (June-August), 81 
B) contemporary vegetation biomes, with heavy black line showing approximate extent of 82 
Greater Cape Floristic Region. Core labels correspond with SI Table 1. Data: (Abatzoglou et 83 
al., 2018; Rutherford et al., 2006)    84 
 85 
These climate regimes contribute to striking differences in vegetation that have implications 86 
for the likelihood of ignition and the availability of suitable fuels for fire (Fig 1B). Many of the 87 
plant communities in southern Africa are fire-adapted and require burning to limit the 88 
expansion of forests and maintain the structure of meta-communities (Bond et al., 2003; 89 
Thuiller et al., 2007). The eastern half of southern Africa is dominated by Savanna and 90 
Grassland biomes. While ignition in this region is more likely during the dry season, burning 91 
is typically fuel-limited, and larger fires coincide with build-up of burnable biomass during 92 
wetter time periods (Daniau et al., 2013). The western and southern coasts and adjacent 93 
inland areas along the Cape Fold mountain ranges are home to the Greater Cape Floristic 94 
Region (GCFR), a phytogeographic region distinguished by hyperdiverse fynbos, 95 
renosterveld, and succulent karoo plant communities (Bergh et al., 2014). Fire in the region 96 
is limited at one end of the aridity spectrum by low fuel connectivity and biomass, and on the 97 
other by low susceptibility to ignition, with the most fire prone vegetation communities 98 
existing between these two extremes (Gillson et al., 2020). Burning in fynbos systems is not 99 
necessarily fuel-limited (van Wilgen, 2009), and relationships between vegetation age 100 
structure and fire size are complex. In general, larger fires in the GCFR tend to correlate with 101 
drought conditions, though seasonality varies across the region (Kraaij and Van Wilgen, 102 
2014). 103 
 104 
In addition to the influences of climate and vegetation, there is also an extensive history of 105 
anthropogenic fire in southern Africa. Intentional use of fire by humans is documented from 106 
the late middle Pleistocene by the presence of in-situ hearths (Deacon, 1995), heat-treated 107 
stones (Brown et al., 2009), charred food remains (Larbey et al., 2019; Wadley et al., 108 
2020a), and use of ashes in bedding (Wadley et al., 2020b). In a review of ethnographic 109 
cases, Scherjon et al. (2015) demonstrated that foraging populations use fire in a number of 110 
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different ways, including manipulating vegetation and fauna, hunting, and communication. 111 
Such activities may have intentional and unintentional consequences for the ecosystems 112 
they inhabit (Bird et al., 2020). Food production practices arrived from the north beginning in 113 
the late Holocene. In summer rainfall regions, incoming farmers introduced a mixed 114 
economy that included cultivation of crops (principally sorghum and millet), keeping of 115 
domestic animals, iron smelting, and settled village life (Mitchell and Whitelaw, 2005; 116 
Parkington and Hall, 2010). In winter rainfall regions of the west, domesticated grains could 117 
not be grown without irrigation, so farming was limited to pastoralism. The appearance of 118 
domesticated species in faunal assemblages, dating to around 2000 BP (Coutu et al., 2021; 119 
Sealy and Yates, 1994), is also associated with archaeological signals including ceramics 120 
and new stone tool technologies (Lander and Russell, 2018), isotopic evidence for dietary 121 
change (Sealy, 2010), and genetic signals among descendant populations for lactase 122 
persistence and known pastoralist lineages (Uren et al., 2016). The relative timing of these 123 
signals is debated, and their expression is not monolithic across southern Africa; however, in 124 
most cases this period is marked by the introduction of domestic stock-keeping, a practice 125 
that has been associated with novel human-environment interactions (Smith and Zeder, 126 
2013). In pastoralist systems today, fire is used principally to clear unwanted vegetation or 127 
pests, improve the quality of forage, and reduce the risk of dangerous wildfires (Butz, 2009), 128 
and historic accounts indicate that similar practices were in use in southern Africa at the time 129 
of European contact (Pooley, 2014; Skead, 2009). 130 
 131 
In this study, we seek to explore the drivers of fire in southern Africa and the role, if any, of 132 
past human ecosystem management. Fire activity attributed to anthropogenic sources 133 
should occur independently of shifts in local conditions that might produce similar patterning 134 
without human intervention (Bird and Cali, 1998; Thompson et al., 2021). Given the 135 
contrasting range of conditions for fire across southern Africa, especially the anti-phase 136 
relationship between precipitation in the western and eastern sub-regions, we expect that 137 
combined archives of fire activity will fail to show a coherent signal when fire systems are 138 
controlled predominantly by climate. Likewise, we expect few instances where signals in the 139 
western and eastern areas demonstrate coordinated change in fire activity under a climate-140 
driven scenario. Here, we focus on the Holocene, which encompasses a long period of 141 
forager and a known shift in land use and subsistence practices with the advent of farming in 142 
southern Africa ~2000 BP (Mitchell, 2002).  143 

Materials and Methods 144 

Microcharcoal analyses standardization approach 145 
Sedimentary microcharcoal analysis was used in this study to assess the history of fire 146 
activity in southern Africa. Charred particles are produced through incomplete combustion of 147 
organic matter. These are transported away from points of combustion by wind or water and 148 
collect in sedimentary basins. Sequential sediment deposition in these basins produce 149 
laminar sedimentary records, which are then sampled using various methods (e.g. coring, 150 
section sampling, etc.). Charcoal recovered from sedimentary records provides direct 151 
evidence of biomass burning over time. 152 
 153 
Charcoal quantities are typically reported as a range of metrics, including influx, 154 
concentration, charcoal/pollen ratios, gravimetrics, image analysis, size classification etc. 155 
Previous charcoal syntheses (Power et al., 2008) reveal that values from individual 156 
sedimentary-based charcoal sample range over 13 orders of magnitude. A protocol has 157 
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been established for transforming and standardizing individual charcoal records. The 158 
protocol includes: (1) rescaling the values using a minimax transformation, (2) transforming 159 
and homogenizing the variance using the Box-Cox transformation, and (3) rescaling values 160 
once more to z-scores (see SI Appendix 1 for full details).  161 
 162 
Charcoal data from lacustrine and terrestrial sources was obtained from the Global Charcoal 163 
Database (www.paleofire.org), National Centers for Environmental Information 164 
(www.ncei.noaa.gov), and additional published sources (Chase et al., 2015b; Neumann et 165 
al., 2011; Quick et al., 2016). These are distributed in two clusters: one in the southwest 166 
corner of South Africa, the other more widely spread in the northeast (Fig 1). Data were 167 
transformed and standardized using the paleofire software package (Blarquez et al., 2014) 168 
for the R statistical computing platform (R Development Core Team, 2017).  169 
 170 
Radiocarbon analysis  171 
To assess human occupation history, summed probability distributions (SPDs) were 172 
generated using radiocarbon determinations from archaeological surveys and excavations. 173 
These methods use the frequency of dated cultural materials recovered by archaeologists as 174 
a model for the depositional history of these kinds of materials overall (e.g., Riris and Arroyo-175 
Kalin, 2019). Assuming that the record is not systematically biased by sampling, processing, 176 
preservation, visibility, etc. at the scale of observation, this method provides broad 177 
indications of the relative intensity of human activity over time.  178 
 179 
Radiocarbon determinations were drawn from the Southern African Radiocarbon Database 180 
(https://c14.arch.ox.ac.uk/sadb), a collection of data from previously published sources 181 
(Loftus et al., 2019). In our study, analyses were limited to data from the last 10000 years 182 
from Eswatini, Lesotho, and South Africa (n=1845). Analyses were undertaken using the 183 
rcarbon v1.3 software package (Bevan et al., 2019) for the R statistical computing platform 184 
(R Development Core Team, 2017). We follow contemporary best practices to estimate 185 
sensitivity to parameter choices and characterize uncertainty and potential sources of bias, 186 
with details provided in SI Appendix 2.  187 

Results 188 

Composite microcharcoal records are an indicator of the relative degree of fire activity 189 
among the depositional environments under study (Power et al., 2008). Experimental studies 190 
have shown that while the frequency of larger charred particles is usually indicative of local 191 
fire events, smaller particles (e.g. <100 m) are more reflective of extralocal or regional 192 
trends in “background” fire activity (Whitlock and Anderson, 2003). We used 27 sedimentary 193 
sequences from 25 sampling sites for building composites, derived from lacustrine/estuarine 194 
cores and rock hyrax (Procavia capensis) midden (hyraceum) deposits (Table S1). These 195 
are distributed in two clusters: one in the west (mostly inside the WRZ/ARZ and the GCFR), 196 
the other in the east (inside the SRZ and the Grassland/Savanna biomes; see Fig 1). These 197 
clusters provide a convenient point of distinction because, as discussed above, there are 198 
notable differences in the climate, vegetation, and archaeological histories of the eastern 199 
and western parts of the subcontinent. 200 
 201 
When records from across southern Africa are aggregated (Fig 2A), they show a peak in 202 
charcoal influx in the early mid-Holocene (~8,200) years ago, followed by short-term 203 
fluctuations over the next ~6,000 years, with higher degrees of uncertainty around most 204 
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peaks. For example, the period between 7000 and 5000 BP has a median value close to 205 
zero, with confidence intervals extending between +0.5z and -0.5z. This suggests 206 
contrasting values are contributing to the aggregate picture during this period. There is an 207 
increase in fire activity just before 2,000 years ago, after which fire activity is persistently 208 
higher than average. Separating this sample into eastern and western subsets (Fig 2B-C), 209 
the two records are divergent through much of the mid-Holocene (Fig 2D). Notably, higher 210 
levels of fire activity in the west between 7000 and 5000 BP contrast with lower levels in the 211 
east, consistent with climatic and environmental differences between these two regions and 212 
helping to explain the uncertainty during this period in the aggregate record. Increases in fire 213 
activity during the early and late Holocene persist in both records, though the eastern subset 214 
is especially anomalous.  215 
 216 

217 
   218 
Figure 2: Holocene composite charcoal influx (z) for A) southern Africa, B) eastern subset, 219 
C) western subset, and D) difference plot between eastern and western subsets. Solid lines 220 
in A, B, and C indicate median composite influx values with LOWESS smoothing (250 half-221 
width); envelopes indicate 95% confidence intervals. Dark red line in A shows number of 222 
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sites contributing to the charcoal influx record over time (see Fig S1 for sample density). 223 
Light grey area in all plots indicates onset of novel subsistence strategies, defined here 224 
using the earliest dated archaeological instances of domesticated stock (Lander and Russell, 225 
2018).  226 
 227 
These shifts in fire activity can be further illustrated by exploring the spatial distribution of 228 
charcoal influx at the individual sampling sites across southern Africa (Fig 3). To do this, we 229 
calculated transformed z-scores for microcharcoal abundances in each dated record within 230 
those sites (see SI Appendix 1 for details). These z-scores were then plotted in 2000-year 231 
intervals according to direction and degree of deviation from 0. It is important to clarify that 232 
negative and positive values are not indicative of absence or presence, but that the influx is 233 
less or more than that recovered on average from that site during the base period (10,000 – 234 
200 BP).   235 
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 236 
 237 

 238 
Figure 3 Maps of southern Africa at 2000-year intervals showing distribution of positive (red) 239 
and negative (blue) microcharcoal influx z-scores associated with recorded samples. Size of 240 
point indicates deviation from mean standardized value of 0. Samples plotted semi-241 
transparently using a 0.1 degree jitter to show multiple records from the same site (darker 242 
shade indicates more overlap).  243 
 244 
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The mapping exercise shows interregional coherence in the earliest period (10- 8k BP) that 245 
is replaced by a shift toward more fire activity in the west relative to the east, especially 246 
between 6 and 4k BP. This trend is reversed between 4 and 2k BP, with marginally 247 
increased fire activity in the east and a decline in the west. The final time window (2,000 – 248 
200 BP) shows the greatest distribution of positive fire records; of sites with records from this 249 
period (N = 24), 82.5% indicate positive influx and 62.5% show net positive anomalies. 250 
Using a two-sample Kolmogorov-Smirnov test between influx values before 2,000 BP (n = 251 
591) and after 2,000 BP (n = 320) suggests that the pattern seen in the map is not an artifact 252 
of improved sampling resolution over time (D = 0.124, p = 0.003). Additional one-sample 253 
tests were used to evaluate the significance of deviations between the influx scores in each 254 
time window and the standard normal distribution. Only the 2k – 200 BP window (D = 0.096, 255 
p = 0.012) featured a significant positive shift (μ = 0.13). It follows that the late Holocene 256 
trend is not just localized to a single region in southern Africa, but is reflecting increases in 257 
fire activity within regions and between them. 258 
 259 
The observed changes in fire occurrence during the last 10,000 years, and their periodic 260 
coordination across southern Africa, cannot readily be explained by changes in climate using 261 
currently available records. In the east, where nearly half of our charcoal samples occur, the 262 
early-to-mid Holocene fire record follows closely with aridity indices derived from pollen 263 
sequences (Fig 4B) (Chevalier and Chase, 2016). This implies more fire when there is 264 
greater moisture availability, consistent with a fuel-limited fire regime (Daniau et al., 2013). 265 
However, an increase in aridity is indicated over the last 2,000 years that would be expected 266 
to drive a decrease in fire, in direct contrast to the substantial increase observed in charcoal 267 
influx (Chevalier and Chase, 2016). In the west there is an emerging picture of regional 268 
heterogeneity in Holocene climate patterns that suggests spatially varying influences (Chase 269 
et al., 2019). For example, proxies for moisture availability in the ARZ vary markedly along 270 
east-west and elevational clines, potentially indicating differing influences of Atlantic and 271 
Indian Ocean systems (Chase and Quick, 2018). While paleoclimate records sampled 272 
across this part of the subcontinent show marked changes in moisture availability earlier and 273 
later in the Holocene, these vary from place to place, and there is little in the climate record 274 
consistent with directional fire regime change around 2000 years ago (Fig 4D-F). 275 
 276 
Increased evidence for fire could reflect a broad shift in human activity, such as a change in 277 
the overall population or a behavior that is associated with increased burning.  Changes in 278 
the density of probabilities from archaeological radiocarbon determinations are increasingly 279 
used as a proxy for human activity (Riris and Arroyo-Kalin, 2019; Timpson et al., 2014). This 280 
method rests on assumptions about the sampling, visibility, and preservation of datable 281 
archaeological materials, and is subject to known biases in the radiocarbon calibration 282 
process (discussed in more detail in SI Appendix 2). Like the microcharcoal record, the 283 
collection of radiocarbon data in southern Africa is uneven in time and space; however, it is 284 
presently the most coherent dataset available for identifying broad trends in the intensity of 285 
human activity at regional and subcontinental scales. Summed probability distributions 286 
(SPD) were generated using 1845 determinations from 514 unique sites across southern 287 
Africa (Fig 1). The overall trend shows increases through time (Fig 4G black line), with 288 
similar patterning visible in counts of dated archaeological sites over time (Fig 4H). However, 289 
the rate of change is notably different between eastern and western areas (Fig 4G blue and 290 
red lines). The former shows continuous growth during the late Holocene, while the latter 291 
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features more gradual growth that becomes effectively static over the last 2000 years (see 292 
also SI Fig 9).  293 
 294 
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Figure 4 Comparison of (A) composite charcoal from eastern southern Africa, (B) pollen-296 
derived aridity index from the southern SRZ (Chevalier and Chase, 2016), (C) composite 297 
charcoal from western southern Africa (D-F) hyraceum nitrogen isotope concentrations from 298 
sites across the GCFR (Chase et al. 2013; Chase et al., 2011; Chase et al. 2020), and G) 299 
summed probabilities of radiocarbon determinations from all southern Africa (black), SRZ 300 
(blue), and GCFR (red), and H) counts of all dated archaeological sites (black bars) and 301 
sites associated with pastoralism (white bars) from southern Africa. Light grey area in all 302 
plots indicates onset of novel subsistence strategies, defined here using the earliest dated 303 
archaeological instances of domesticated stock (Lander and Russell, 2018). 304 

Discussion 305 

Southern Africa's contrasting climate configurations allow for demonstration of human 306 
influence on systems where fire has consistently been a primary force shaping the 307 
environment. Evidence for fire activity aggregated across the subcontinent shows 308 
fluctuations during the mid-Holocene align with predominant climate regimes that enable 309 
ignitions and control fuel availability, as would be expected in predominantly fuel-limited 310 
systems. Increases in the years around and after 2000 BP deviate from this trend (Figure 311 
2A), coinciding with the new subsistence strategies through the region that brought 312 
fundamental changes to human-environment interactions (Bousman, 1998; Lander and 313 
Russell, 2018; Sealy, 2010). Our study provides empirical evidence for a widespread 314 
connection between food production and novel fire regimes in southern Africa. At the same 315 
time, the contributions to this pattern differ between eastern and western regions, suggesting 316 
subtleties in the ecological scales of human impacts (Power et al., 2018), and we consider 317 
these below. 318 
 319 
In grasslands and savannas of eastern southern Africa, changes in microcharcoal deposition 320 
show clear distinctions between periods of greater or lesser fire activity. During the last 2000 321 
years, increased fire activity occurs in contrast to prevailing climate-fire dynamics, 322 
suggesting an alternative driver is generating more microcharcoal than would be expected 323 
from natural ignitions alone. This increase coincides with a positive rate of change in proxies 324 
for human activity such as radiocarbon summed probability distributions and site counts, in 325 
accord with established associations between human presence and fire activity (Marlon et 326 
al., 2013). These increases in evidence for fire and human activity also coincide with the 327 
advent and proliferation of new methods of food production; here, mixed farming practices. 328 
We argue this patterning in the late Holocene microcharcoal record is explainable as the 329 
outcome of a feedback loop in a coupled natural-human system (Liu et al., 2007), where 330 
burning produces outcomes that enable or encourage additional burning. Burning in these 331 
environments maintains the distribution of palatable grasses, reduces the encroachment of 332 
woody species and, outside of arid areas, may increase above-ground productivity (Little et 333 
al., 2015; Oluwole et al., 2008; Trollope et al., 2014). Since grasses in many environments 334 
can be burned regularly (~1-4 years) (Morris et al., 2021; Oluwole et al., 2008), human 335 
managers are able to exert substantial control over the distribution of resources across the 336 
landscape, enabling longer-term residence and more concentrated human activity (Bird et 337 
al., 2020; Boivin et al., 2016), and further increasing the benefit of, and capacity for, burning 338 
activity. These effects presumably would have been familiar to early farmers whose 339 
practices originated in northern areas and dispersed along grassy corridors (Chritz et al., 340 
2015), and such regimes may have been further augmented by fire used to clear land for 341 
planting and grazing.  342 
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 343 
In the western areas of southern Africa, the aggregate microcharcoal record also indicates a 344 
modest increase in fire activity during the late Holocene, but transitions in this record 345 
throughout the Holocene are less clear when compared with the eastern areas. The GCFR 346 
has many fire-dependent species, and there has been plenty of speculation concerning the 347 
role of anthropogenic fire in the maintenance of vegetation community structure (Bond et al., 348 
2003; Deacon, 1993; Pyne, 2015). However, if a process of intensive burning and grazing 349 
were initiated in the west, it is questionable whether it would be sustainable for long periods 350 
of time. Most fynbos-dominated habitats consist of low-nutrient vegetation and are unlikely to 351 
have supported high densities of large herbivores. While consumption of fynbos by grazers 352 
is typically limited to post-fire growth (Luyt, 2005), sustainable fire return intervals are 353 
typically less frequent in fynbos systems (~10-20 years for fynbos, ~3-7 years for 354 
renosterveld) (Kraaij and Van Wilgen, 2014; Rebelo et al., 2006). Renosterveld communities 355 
were more widespread in the past (Rouget et al., 2006), and it has been suggested on the 356 
basis of historical records that they may have had a grassier character as well (Rebelo et al., 357 
2006 cf. Forbes et al., 2018), providing more grazing opportunities than present vegetation 358 
distributions. However, there is evidence to suggest that fire coupled with grazing in 359 
renosterveld can diminish palatable species, converting grazing lawns into unpalatable 360 
shrubland (Radloff et al., 2014). This would imply that the use of fynbos or renosterveld for 361 
grazing livestock may have required more nuanced management dependent on place-362 
specific conditions, potentially limiting the feedback capacity for an incoming food production 363 
system and making it more difficult to distinguish from natural fire regimes in a microcharcoal 364 
record. The complex interrelationships between climate, vegetation, and fire, and their 365 
influence on different forms of economic organization, deserve more attention. 366 
 367 
In addition to differences in vegetation responses to anthropogenic firing when compared to 368 
eastern areas, there is also greater variability within the western areas in terms of rainfall 369 
seasonality and vegetation community structure that might influence the magnitude of 370 
changes in the aggregate microcharcoal record. This can be illustrated by contrasting the 371 
Verlorenvlei and Eilandvlei sampling sites, both of which are coastal lakes considered to lie 372 
within the GCFR (Bergh et al., 2014). Verlorenvlei is situated on the semi-arid western coast, 373 
receiving 200-250 mm of rain per annum almost exclusively during the winter, and 374 
vegetation consists of sandplain and mountain fynbos as well as coastal strandveld (fynbos-375 
succulent karoo mosaic). These communities are flammable, though fire in strandveld is 376 
limited by succulent content and lower fuel connectivity (Kraaij and van Wilgen 2014). 377 
Eilandvlei is located on the southern coast in the ARZ, receiving 900-1000 mm of rain per 378 
annum. This site lies within a fynbos-forest mosaic that is generally less susceptible to 379 
burning due to lower probability of ignition (MacPherson et al., 2019). During the last 2000 380 
years, Verlorenvlei shows signals like many other western sites, with a modest increase in 381 
the number of positive fire anomalies (SI Fig 2). Such patterning might be expected from the 382 
introduction of grazing in a system with limited opportunities for positive feedbacks (see also 383 
Cordova et al 2019; MacPherson et al. 2018). Eilandvlei, on the other hand, stands out with 384 
high ratio of negative anomalies during this period, consistent with pollen evidence showing 385 
increasingly wet conditions and a growing forest component (Quick et al., 2018). As opposed 386 
to the eastern half of the subcontinent, where areas with climatic and vegetation differences 387 
are mostly unified by consistent rainfall seasonality and a grassy component, the diverse 388 
climate and vegetation arrangements across the GCFR exert contrasting controls on fire and 389 
are therefore less likely to exhibit a uniform fire response through time when aggregated. 390 
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More sampling across this region would be helpful for disentangling fire signals, particularly 391 
among the different vegetation communities of the GCFR (e.g., forest-fynbos mosaic vs. 392 
strandveld) and across the WRZ/ARZ divide.  393 
 394 
Prior to 2000 years ago, the southern African record of fire activity and its connections to 395 
humans and climate are less clear. A peak in the composite charcoal record occurs before 8 396 
kya (Fig 2A), a pattern that occurs in both subsets and is also observed across sub-Saharan 397 
Africa more broadly (Marlon et al., 2013). The coincidence of these fire signals across 398 
seasonal rainfall zones is suggestive of a coordinating process. A potential explanation for 399 
this is the 8.2k climate anomaly (Alley and Ágústsdóttir, 2005), a global cooling event which 400 
may have accentuated fire-positive conditions across southern Africa (Chase et al., 2015a; 401 
Voarintsoa et al., 2019). Fluctuations in the composite microcharcoal record during the mid-402 
Holocene are likely an outcome of western and eastern climate regimes exerting contrasting 403 
influences through time (Fig 2A-C). When broken down into sub-regions, these exhibit an 404 
antiphase relationship consistent with the overall climatology. These factors suggest climate 405 
was likely a driving factor throughout the early to mid-Holocene, but other factors could also 406 
contribute to changes in fire activity during this period. Charred traces of geophytes (e.g. 407 
Moraea spp., Watsonia spp.) found in Middle and Later Stone Age archaeological deposits 408 
in southern Africa (Liengme, 1987; Wadley et al., 2020a) suggest a long-term role in 409 
subsistence (Marean 2010). Connections between fire and geophyte productivity have been 410 
used to argue that earlier populations may have used fire to increase the abundance and 411 
predictability of these resources (Botha et al., 2020; Deacon, 1993). If this kind of 412 
manipulation of vegetation were occurring, though, it is difficult to detect in the composite 413 
microcharcoal record. This may speak to the relative densities of forager populations and 414 
scales of burning activities practiced by foragers compared to food producers (Nikulina et al., 415 
2022; Roos et al., 2018; Scherjon et al., 2015).  416 
 417 
Understanding human impacts on past vegetation communities has implications for the 418 
management of contemporary communities descended therefrom. For example, many 419 
ecosystems in southern Africa are maintained by regimes of regular disturbances (e.g., 420 
Morris et al., 2021; Gillson et al., 2020), and fire is frequently used as a management tool for 421 
biodiversity conservation (e.g., van Wilgen et al., 2013; van Wilgen et al., 2011). Historical 422 
records of fire activity provide insights into these dynamics and inform management practice, 423 
but such records are limited in temporal extent (typically decades) and are frequently derived 424 
from observations in ecosystems that have been heavily altered by recent human activities 425 
(e.g., introduction of invasive species, landscape fragmentation). It follows that maintaining 426 
biodiversity and enhancing ecosystem services may require disturbance frequencies or 427 
intensities that extend beyond the scope of historically recorded regimes (Case and Staver, 428 
2017). Information from paleoecological archives such as those presented here can be 429 
helpful in establishing longer-term baselines. Our observations imply a deep history of 430 
human-mediated fire activity that merits consideration when evaluating ‘natural’ fire regimes 431 
across the biomes of southern Africa.  432 
 433 
In summary, it has long been presumed that fire was used to manage the landscapes of 434 
southern Africa in the past. While our analysis shows various couplings between climate and 435 
fire activity in southern Africa during the Holocene, we argue that an increase in fire activity 436 
during the last 2000 years, particularly in eastern areas, is likely associated with the spread 437 
of food production. However, the character of local vegetation and its constraints on the 438 
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benefits realized from anthropogenic burning contribute to the patterning observed in the 439 
record. The result is a signal that is not uniform across southern Africa, and likely to be 440 
different still in other ecosystems through which food production dispersed. These 441 
interrelationships between vegetation, climate, and fire are fundamental both for evaluating 442 
narratives of human history and for understanding the role of past human activity in shaping 443 
present day ecosystems. 444 
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